On a class of spatial discretizations of equations of the nonlinear Schrödinger type
نویسندگان
چکیده
We demonstrate the systematic derivation of a class of discretizations of nonlinear Schrödinger (NLS) equations for general polynomial nonlinearity whose stationary solutions can be found from a reduced two-point algebraic condition. We then focus on the cubic problem and illustrate how our class of models compares with the well-known discretizations such as the standard discrete NLS equation, or the integrable variant thereof. We also discuss the conservation laws of the derived generalizations of the cubic case, such as the lattice momentum or mass and the connection with their corresponding continuum siblings. © 2006 IMACS. Published by Elsevier B.V. All rights reserved. PACS: 03.40.Kf; 63.20Pw
منابع مشابه
On a class of nonlinear fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملQuasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملNonlinear Schrödinger Equations and Their Spectral Semi-Discretizations Over Long Times
Cubic Schrödinger equations with small initial data (or small nonlinearity) and their spectral semi-discretizations in space are analyzed. It is shown that along both, the solution of the nonlinear Schrödinger equation as well as the solution of the semi-discretized equation, the actions of the linear Schrödinger equation are approximately conserved over long times. This also allows to show app...
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 74 شماره
صفحات -
تاریخ انتشار 2007